3.1062 \(\int \frac{x^{9/2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=389 \[ -\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{2 x^{3/2}}{3 c} \]

[Out]

(2*x^(3/2))/(3*c) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4
*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTa
n[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))
+ ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2
^(3/4)*c^(7/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/
4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

________________________________________________________________________________________

Rubi [A]  time = 0.85992, antiderivative size = 389, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1115, 1367, 1510, 298, 205, 208} \[ -\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{\left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-\sqrt{b^2-4 a c}-b}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{\sqrt{b^2-4 a c}-b}}+\frac{2 x^{3/2}}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[x^(9/2)/(a + b*x^2 + c*x^4),x]

[Out]

(2*x^(3/2))/(3*c) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4
*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTa
n[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))
+ ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2
^(3/4)*c^(7/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4)) + ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/
4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2^(3/4)*c^(7/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))

Rule 1115

Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[
k/d, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(2*k))/d^2 + (c*x^(4*k))/d^4)^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1510

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^{9/2}}{a+b x^2+c x^4} \, dx &=2 \operatorname{Subst}\left (\int \frac{x^{10}}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )\\ &=\frac{2 x^{3/2}}{3 c}-\frac{2 \operatorname{Subst}\left (\int \frac{x^2 \left (3 a+3 b x^4\right )}{a+b x^4+c x^8} \, dx,x,\sqrt{x}\right )}{3 c}\\ &=\frac{2 x^{3/2}}{3 c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{x^2}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx,x,\sqrt{x}\right )}{c}\\ &=\frac{2 x^{3/2}}{3 c}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} c^{3/2}}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} c^{3/2}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} c^{3/2}}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx,x,\sqrt{x}\right )}{\sqrt{2} c^{3/2}}\\ &=\frac{2 x^{3/2}}{3 c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}+\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b-\sqrt{b^2-4 a c}}}+\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} \sqrt{x}}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2^{3/4} c^{7/4} \sqrt [4]{-b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0496691, size = 80, normalized size = 0.21 \[ \frac{4 x^{3/2}-3 \text{RootSum}\left [\text{$\#$1}^4 b+\text{$\#$1}^8 c+a\& ,\frac{\text{$\#$1}^4 b \log \left (\sqrt{x}-\text{$\#$1}\right )+a \log \left (\sqrt{x}-\text{$\#$1}\right )}{2 \text{$\#$1}^5 c+\text{$\#$1} b}\& \right ]}{6 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(9/2)/(a + b*x^2 + c*x^4),x]

[Out]

(4*x^(3/2) - 3*RootSum[a + b*#1^4 + c*#1^8 & , (a*Log[Sqrt[x] - #1] + b*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1
^5) & ])/(6*c)

________________________________________________________________________________________

Maple [C]  time = 0.312, size = 65, normalized size = 0.2 \begin{align*}{\frac{2}{3\,c}{x}^{{\frac{3}{2}}}}-{\frac{1}{2\,c}\sum _{{\it \_R}={\it RootOf} \left ( c{{\it \_Z}}^{8}+b{{\it \_Z}}^{4}+a \right ) }{\frac{{{\it \_R}}^{6}b+{{\it \_R}}^{2}a}{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}\ln \left ( \sqrt{x}-{\it \_R} \right ) }} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(9/2)/(c*x^4+b*x^2+a),x)

[Out]

2/3*x^(3/2)/c-1/2/c*sum((_R^6*b+_R^2*a)/(2*_R^7*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2 \, x^{\frac{3}{2}}}{3 \, c} - \int \frac{b x^{\frac{5}{2}} + a \sqrt{x}}{c^{2} x^{4} + b c x^{2} + a c}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

2/3*x^(3/2)/c - integrate((b*x^(5/2) + a*sqrt(x))/(c^2*x^4 + b*c*x^2 + a*c), x)

________________________________________________________________________________________

Fricas [B]  time = 20.8619, size = 14407, normalized size = 37.04 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(12*c*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a
^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6
)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*arctan(1
/2*((b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 - 25*a^3*b^3*c^3 + 4*a^4*b*c^4 - (b^6*c^7 - 10*a*b^4*c^8 + 32*a^2*b^2*c^
9 - 32*a^3*c^10)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5
+ a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt((a^10*b^12 - 10*a^11*b^10*c + 37*
a^12*b^8*c^2 - 62*a^13*b^6*c^3 + 46*a^14*b^4*c^4 - 12*a^15*b^2*c^5 + a^16*c^6)*x - 1/2*sqrt(1/2)*(a^7*b^17 - 1
7*a^8*b^15*c + 119*a^9*b^13*c^2 - 441*a^10*b^11*c^3 + 924*a^11*b^9*c^4 - 1078*a^12*b^7*c^5 + 637*a^13*b^5*c^6
- 151*a^14*b^3*c^7 + 12*a^15*b*c^8 - (a^7*b^14*c^7 - 18*a^8*b^12*c^8 + 131*a^9*b^10*c^9 - 491*a^10*b^8*c^10 +
997*a^11*b^6*c^11 - 1052*a^12*b^4*c^12 + 496*a^13*b^2*c^13 - 64*a^14*c^14)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b
^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^
16 - 64*a^3*c^17)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^
9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^
6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9))) + (a^5*b^15 -
 14*a^6*b^13*c + 77*a^7*b^11*c^2 - 210*a^8*b^9*c^3 + 294*a^9*b^7*c^4 - 196*a^10*b^5*c^5 + 49*a^11*b^3*c^6 - 4*
a^12*b*c^7 - (a^5*b^12*c^7 - 15*a^6*b^10*c^8 + 88*a^7*b^8*c^9 - 253*a^8*b^6*c^10 + 362*a^9*b^4*c^11 - 224*a^10
*b^2*c^12 + 32*a^11*c^13)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5
*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt(x))*sqrt(sqrt(1/2)*sqrt(
-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10
*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 +
48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))/(a^7*b^12 - 10*a^8*b^10*c + 37*a^9*b^8
*c^2 - 62*a^10*b^6*c^3 + 46*a^11*b^4*c^4 - 12*a^12*b^2*c^5 + a^13*c^6)) - 12*c*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a
*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2
*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*
c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*arctan(-1/2*((b^9 - 9*a*b^7*c + 26*a^2*b^5*c^2 -
25*a^3*b^3*c^3 + 4*a^4*b*c^4 + (b^6*c^7 - 10*a*b^4*c^8 + 32*a^2*b^2*c^9 - 32*a^3*c^10)*sqrt((b^12 - 10*a*b^10*
c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 4
8*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt((a^10*b^12 - 10*a^11*b^10*c + 37*a^12*b^8*c^2 - 62*a^13*b^6*c^3 + 46*a^14
*b^4*c^4 - 12*a^15*b^2*c^5 + a^16*c^6)*x - 1/2*sqrt(1/2)*(a^7*b^17 - 17*a^8*b^15*c + 119*a^9*b^13*c^2 - 441*a^
10*b^11*c^3 + 924*a^11*b^9*c^4 - 1078*a^12*b^7*c^5 + 637*a^13*b^5*c^6 - 151*a^14*b^3*c^7 + 12*a^15*b*c^8 + (a^
7*b^14*c^7 - 18*a^8*b^12*c^8 + 131*a^9*b^10*c^9 - 491*a^10*b^8*c^10 + 997*a^11*b^6*c^11 - 1052*a^12*b^4*c^12 +
 496*a^13*b^2*c^13 - 64*a^14*c^14)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4
 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt(-(b^7 - 7*a*b^5
*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8
*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16
 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^
2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*
c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/
(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9))) + (a^5*b^15 - 14*a^6*b^13*c + 77*a^7*b^11*c^2 - 210*a^8*b^9*c^3 + 294*a
^9*b^7*c^4 - 196*a^10*b^5*c^5 + 49*a^11*b^3*c^6 - 4*a^12*b*c^7 + (a^5*b^12*c^7 - 15*a^6*b^10*c^8 + 88*a^7*b^8*
c^9 - 253*a^8*b^6*c^10 + 362*a^9*b^4*c^11 - 224*a^10*b^2*c^12 + 32*a^11*c^13)*sqrt((b^12 - 10*a*b^10*c + 37*a^
2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2
*c^16 - 64*a^3*c^17)))*sqrt(x)*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7
 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*
a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 1
6*a^2*c^9))))/(a^7*b^12 - 10*a^8*b^10*c + 37*a^9*b^8*c^2 - 62*a^10*b^6*c^3 + 46*a^11*b^4*c^4 - 12*a^12*b^2*c^5
 + a^13*c^6)) - 3*c*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*
c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5
 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9))
)*log(1/2*sqrt(1/2)*(b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c
^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 - (b^11*c^7 - 17*a*b^9*c^8 + 113*a^2*b^7*c^9 - 364*a^3*b^5*c^10 + 560*a^4*b^
3*c^11 - 320*a^5*b*c^12)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*
b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*
a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^
2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2
*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*
b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a
^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 -
 8*a*b^2*c^8 + 16*a^2*c^9)) - (a^5*b^6 - 5*a^6*b^4*c + 6*a^7*b^2*c^2 - a^8*c^3)*sqrt(x)) + 3*c*sqrt(sqrt(1/2)*
sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a
*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^
15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*log(-1/2*sqrt(1/2)*(b^14 - 16*a*b
^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7
- (b^11*c^7 - 17*a*b^9*c^8 + 113*a^2*b^7*c^9 - 364*a^3*b^5*c^10 + 560*a^4*b^3*c^11 - 320*a^5*b*c^12)*sqrt((b^1
2 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*
a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b
*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^
4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 -
8*a*b^2*c^8 + 16*a^2*c^9)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 + (b^4*c^7 - 8*a*b^2*c^8 + 1
6*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*
c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)) - (a^5
*b^6 - 5*a^6*b^4*c + 6*a^7*b^2*c^2 - a^8*c^3)*sqrt(x)) - 3*c*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^
3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*
b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17
)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*log(1/2*sqrt(1/2)*(b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*
b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 + (b^11*c^7 - 17*a*b^9*c^8 + 113*a^
2*b^7*c^9 - 364*a^3*b^5*c^10 + 560*a^4*b^3*c^11 - 320*a^5*b*c^12)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 -
62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a
^3*c^17)))*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*
a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^
6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*sqrt(-(
b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c
 + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48
*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)) - (a^5*b^6 - 5*a^6*b^4*c + 6*a^7*b^2*c^2
- a^8*c^3)*sqrt(x)) + 3*c*sqrt(sqrt(1/2)*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*
a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b
^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2
*c^9)))*log(-1/2*sqrt(1/2)*(b^14 - 16*a*b^12*c + 102*a^2*b^10*c^2 - 328*a^3*b^8*c^3 + 553*a^4*b^6*c^4 - 457*a^
5*b^4*c^5 + 152*a^6*b^2*c^6 - 16*a^7*c^7 + (b^11*c^7 - 17*a*b^9*c^8 + 113*a^2*b^7*c^9 - 364*a^3*b^5*c^10 + 560
*a^4*b^3*c^11 - 320*a^5*b*c^12)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 -
12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))*sqrt(sqrt(1/2)*sqrt(-(b
^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 - 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c
+ 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*
a^2*b^2*c^16 - 64*a^3*c^17)))/(b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)))*sqrt(-(b^7 - 7*a*b^5*c + 14*a^2*b^3*c^2 -
 7*a^3*b*c^3 - (b^4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)*sqrt((b^12 - 10*a*b^10*c + 37*a^2*b^8*c^2 - 62*a^3*b^6*c^3
 + 46*a^4*b^4*c^4 - 12*a^5*b^2*c^5 + a^6*c^6)/(b^6*c^14 - 12*a*b^4*c^15 + 48*a^2*b^2*c^16 - 64*a^3*c^17)))/(b^
4*c^7 - 8*a*b^2*c^8 + 16*a^2*c^9)) - (a^5*b^6 - 5*a^6*b^4*c + 6*a^7*b^2*c^2 - a^8*c^3)*sqrt(x)) + 4*x^(3/2))/c

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(9/2)/(c*x**4+b*x**2+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{\frac{9}{2}}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(9/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

integrate(x^(9/2)/(c*x^4 + b*x^2 + a), x)